Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton
نویسندگان
چکیده
Greige cotton contains waxes and pectin on the outer surface of the fiber that are removed when bleached, but these components present potential wound dressing functionality. Cotton nonwovens blended with hydrophobic and hydrophilic fibers including viscose, polyester, and polypropylene were assessed for clotting activity with thromboelastography (TEG) and thrombin production. Clotting was evaluated based on TEG measurements: R (time to initiation of clot formation), K (time from end of R to a 20 mm clot), α (rate of clot formation according to the angle tangent to the curve as K is reached), and MA (clot strength). TEG values correlate to material surface polarity as measured with electrokinetic parameters (ζplateau, Δζ and swell ratio). The material surface polarity (ζplateau) varied from -22 to -61 mV. K values and thrombin concentrations were found to be inversely proportional to ζplateau with an increase in material hydrophobicity. An increase in the swell ratios of the materials correlated with decreased K values suggesting that clotting rates following fibrin formation increase with increasing material surface area due to swelling. Clot strength (MA) also increased with material hydrophobicity. Structure/function implications from the observed clotting physiology induced by the materials are discussed.
منابع مشابه
Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials
Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H₂O₂) generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the ...
متن کاملThrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis
Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, ...
متن کاملHighly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds
To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel®/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base...
متن کاملAcoustical evaluation of carbonized and activated cotton nonwovens.
An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise abs...
متن کاملReducing Automotive interior Noise with Natural Fiber Nonwoven Floor Covering Systems
Eliminating unwanted noise in passenger compartments of vehicles is important to automobile manufacturers. The ability to reduce noise inside the vehicle enhances the perceived value of the vehicle to the consumer, and offers a competitive advantage to the manufacturer. Several methods are presently employed to reduce noise and its sources, one of which uses soundabsorbing materials attached to...
متن کامل